Derivative of Logarithmic Functions
Derivative of Logarithmic Functions

Home
Explore
Submit Search
Upload
Login
Signup
Common derivatives integrals
Report
Kavin Ruk
Follow
Student
Jan. 16, 2018

0 likes

527 views
Common derivatives integrals
Jan. 16, 2018

0 likes

527 views
Kavin Ruk
Follow
Student
Report
Engineering
calculus
Common derivatives integrals
1 of 4
Download Now
1
of
4
Recommended
Common derivatives integrals
olziich
22.5K views

4 slides
Integration techniques
Krishna Gali
2.5K views

18 slides
Integration Formulas
hannagrauser1
5.2K views

5 slides
Algebra and Trigonometry 9th Edition Larson Solutions Manual
kejeqadaqo
1.9K views

163 slides
Common derivatives integrals_reduced
Kyro Fitkry
23K views

2 slides
8 arc length and area of surfaces x
math266
693 views

57 slides
More Related Content
Slideshows for you
(20)
Integral table
Sasidhar Jannu

1.4K views
Lesson 11: Implicit Differentiation (slides)
Matthew Leingang

1.5K views
Inner Product Space
Patel Raj

4.3K views
Calculus Cheat Sheet All
Moe Han

26.4K views
Solving linear homogeneous recurrence relations
Dr. Maamoun Ahmed

4.7K views
12.5. vector valued functions
math267

399 views
Multiple Choice Questions_Successive Differentiation (CALCULUS)
sanjay gupta

11.6K views
Chapter 4 ลิมิตของฟังก์ชัน
PumPui Oranuch

2.5K views
Mech MA6351 tpde_notes
KIT-Kalaignar Karunanidhi Institute of Technology

3K views
Differentiation
Lohit Jindal

9.5K views
28 mac laurin expansions x
math266

319 views
Chapter 2 (maths 3)
Prathab Harinathan

57.8K views
03 convexfunctions
Sufyan Sahoo

1.3K views
Lesson 8: Derivatives of Polynomials and Exponential functions
Matthew Leingang

11.6K views
Introduction to Julia Language
Diego Marinho de Oliveira

2.6K views
15 integrals of trig products-i-x
math266

441 views
solucionario de purcell 2
José Encalada

2.3K views
1.7 sign charts of factorable formulas t
math260

306 views
Indefinite Integral
JelaiAujero

14.1K views
Trigo Sheet Cheat 😀
Quimm Lee

34.7K views
Similar to Common derivatives integrals
(20)
deveratives integrals
Raka S

1.4K views
Cuaderno+de+integrales
joseluisroyo

614 views
微積分定理與公式
zoayzoay

1.8K views
Integral Calculus
itutor

15.5K views
Capitulo 7 Soluciones Purcell 9na Edicion
FranciscoAlfonso TorresVeliz

15.2K views
51548 0131469657 ism-7
Carlos Fuentes

425 views
Calculo i
salomon benito

458 views
Calculo i
salomon benito

636 views
51548 0131469657 ism-7
crhisstian

1.5K views
11365.integral 2
Nidhu Sharma

14.6K views
Formulario cálculo
Man50035

179 views
Formulario calculo
Andrea José Fuentes Bisbal

1.9K views
Formulario derivadas e integrales
Geovanny Jiménez

14.5K views
Formulario
Genaro Coronel

316 views
Calculo
Ju Lio

336 views
Tablas calculo
Alejandra Fuquene

447 views
Calculo
María Mora

330 views
Formulas de calculo
Jose Alejandro

281 views
Formulario calculo
Javier Culebro Ara

85 views
Formulario
Jonnathan Cespedes

345 views
Recently uploaded
(20)
Air Gunner Training Manual,Part 2.pdf
TahirSadikovi

7 views
Attacking Decentralized Identity.pdf
ssuser264cc11

19 views
Phantam_fabrication_by_Aqib_mir.pdf
AqibMir10

5 views
181. [OPL MRK – 2 Aug 23] Alarm Righ Take Out Abnormal, Tahara – Haris.pptx
RizkiArief6

37 views
ADC UNIT I PPT.pptx
Kongunadu College of Engineering and Technology

8 views
OOAD U1.pptx
anguraju1

5 views
FUNDAMENTALS OF MACHINE LEARNING & IT’S TYPES
Bhimsen Joshi

15 views
vanderbilt_ppt.pdf
HanTos

23 views
Navy Aircraft Fire Control Manual.pdf
TahirSadikovi

5 views
Hybrid Electric Vehicles-Introduction( Unit-1)
Gudipudi Nageswara Rao

24 views
Vaiana Rosati Model of Hysteresis – Differential Formulation.pdf
University of Naples Federico II

19 views
Parachute,Personell Type,24-Foot Diameter,Troop,Chest,Reserve (T-10R) Mainten…
TahirSadikovi

11 views
Farm Power Sources.pptx
JayaruwaniFernando

5 views
Spanning Tree Protocol (STP).pptx
Vignesh kumar

7 views
Uint-5 Big data Frameworks.pdf
Sitamarhi Institute of Technology

5 views
Pratt&Whitney.Gas Turbine Engine and Its Operation.pdf
TahirSadikovi

11 views
subsidization and cross subsidization
SoumyadipSamanta4

17 views
Naval Air Launched Guided Missiles Handbook.pdf
TahirSadikovi

7 views
Electronic Warfare Fundamentals.pdf
TahirSadikovi

7 views
Helmet Flyers Protective SPH-4.pdf
TahirSadikovi

6 views
Common derivatives integrals
Common Derivatives and
Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Derivatives Basic Properties/Formulas/Rules ( )( ) ( ) d cf x cf x dx ′= , c is any constant. ( ) ( )( ) ( ) ( )f x g x f x g x′ ′ ′± = ± ( ) 1n nd x nx dx − = , n is any number. ( ) 0 d c dx = , c is any constant. ( )f g f g f g′ ′ ′= + – (Product Rule) 2 f f g f g g g ′ ′ ′ − = – (Quotient Rule) ( )( )( ) ( )( ) ( ) d f g x f g x g x dx ′ ′= (Chain Rule) ( ) ( ) ( ) ( )g x g xd g x dx ′=e e ( )( ) ( ) ( ) ln g xd g x dx g x ′ = Common Derivatives Polynomials ( ) 0 d c dx = ( ) 1 d x dx = ( ) d cx c dx = ( ) 1n nd x nx dx − = ( ) 1n nd cx ncx dx − = Trig Functions ( )sin cos d x x dx = ( )cos sin d x x dx = − ( ) 2 tan sec d x x dx = ( )sec sec tan d x x x dx = ( )csc csc cot d x x x dx = − ( ) 2 cot csc d x x dx = − Inverse Trig Functions ( )1 2 1 sin 1 d x dx x − = − ( )1 2 1 cos 1 d x dx x − = − − ( )1 2 1 tan 1 d x dx x − = + ( )1 2 1 sec 1 d x dx x x − = − ( )1 2 1 csc 1 d x dx x x − = − − ( )1 2 1 cot 1 d x dx x − = − + Exponential/Logarithm Functions ( ) ( )lnx xd a a a dx = ( )x xd dx =e e ( )( ) 1 ln , 0 d x x dx x = > ( ) 1 ln , 0 d x x dx x = ≠ ( )( ) 1 log , 0 ln a d x x dx x a = > Hyperbolic Trig Functions ( )sinh cosh d x x dx = ( )cosh sinh d x x dx = ( ) 2 tanh sech d x x dx = ( )sech sech tanh d x x x dx = − ( )csch csch coth d x x x dx = − ( ) 2 coth csch d x x dx = −
Common Derivatives and
Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Integrals Basic Properties/Formulas/Rules ( ) ( )cf x dx c f x dx=∫ ∫ , c is a constant. ( ) ( ) ( ) ( )f x g x dx f x dx g x dx± = ±∫ ∫ ∫ ( ) ( ) ( ) ( ) b b aa f x dx F x F b F a= = −∫ where ( ) ( )F x f x dx= ∫ ( ) ( ) b b a a cf x dx c f x dx=∫ ∫ , c is a constant. ( ) ( ) ( ) ( ) b b b a a a f x g x dx f x dx g x dx± = ±∫ ∫ ∫ ( ) 0 a a f x dx =∫ ( ) ( ) b a a b f x dx f x dx= −∫ ∫ ( ) ( ) ( ) b c b a a c f x dx f x dx f x dx= +∫ ∫ ∫ ( ) b a cdx c b a= −∫ If ( ) 0f x ≥ on a x b≤ ≤ then ( ) 0 b a f x dx ≥∫ If ( ) ( )f x g x≥ on a x b≤ ≤ then ( ) ( ) b b a a f x dx g x dx≥∫ ∫ Common Integrals Polynomials dx x c= +∫ k dx k x c= +∫ 11 , 1 1 n n x dx x c n n + = + ≠ − +∫ 1 lndx x c x = +⌠ ⌡ 1 lnx dx x c− = +∫ 11 , 1 1 n n x dx x c n n − − + = + ≠ − +∫ 1 1 lndx ax b c ax b a = + + + ⌠ ⌡ 11 1 p p p q q q q p q q x dx x c x c p q + + = += + + +∫ Trig Functions cos sinu du u c= +∫ sin cosu du u c=− +∫ 2 sec tanu du u c= +∫ sec tan secu u du u c= +∫ csc cot cscu udu u c=− +∫ 2 csc cotu du u c=− +∫ tan ln secu du u c= +∫ cot ln sinu du u c= +∫ sec ln sec tanu du u u c= + +∫ ( )3 1 sec sec tan ln sec tan 2 u du u u u u c= + + +∫ csc ln csc cotu du u u c= − +∫ ( )3 1 csc csc cot ln csc cot 2 u du u u u u c=− + − +∫ Exponential/Logarithm Functions u u du c= +∫e e ln u u a a du c a = +∫ ( )ln lnu du u u u c= − +∫ ( ) ( ) ( )( )2 2 sin sin cos au au bu du a bu b bu c a b = − + +∫ e e ( )1u u u du u c= − +∫ e e ( ) ( ) ( )( )2 2 cos cos sin au au bu du a bu b bu c a b = + + +∫ e e 1 ln ln ln du u c u u = +⌠ ⌡
Common Derivatives and
Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Inverse Trig Functions 1 2 2 1 sin u du c aa u − = + − ⌠ ⌡ 1 1 2 sin sin 1u du u u u c− − = + − +∫ 1 2 2 1 1 tan u du c a u a a − = + + ⌠ ⌡ ( )1 1 21 tan tan ln 1 2 u du u u u c− − = − + +∫ 1 2 2 1 1 sec u du c a au u a − = + − ⌠ ⌡ 1 1 2 cos cos 1u du u u u c− − = − − +∫ Hyperbolic Trig Functions sinh coshu du u c= +∫ sech tanh sechu u du u c=− +∫ 2 sech tanhu du u c= +∫ cosh sinhu du u c= +∫ csch coth cschu u du u c=− +∫ 2 csch cothu du u c=− +∫ ( )tanh ln coshu du u c= +∫ 1 sech tan sinhu du u c− = +∫ Miscellaneous 2 2 1 1 ln 2 u a du c a u a u a + = + − − ⌠ ⌡ 2 2 1 1 ln 2 u a du c u a a u a − = + − + ⌠ ⌡ 2 2 2 2 2 2 2 ln 2 2 u a a u du a u u a u c+ = + + + + +∫ 2 2 2 2 2 2 2 ln 2 2 u a u a du u a u u a c− = − − + − +∫ 2 2 2 2 2 1 sin 2 2 u a u a u du a u c a − − = − + + ∫ 2 2 2 1 2 2 cos 2 2 u a a a u au u du au u c a −− − −= − + + ∫ Standard Integration Techniques Note that all but the first one of these tend to be taught in a Calculus II class. u Substitution Given ( )( ) ( ) b a f g x g x dx′∫ then the substitution ( )u g x= will convert this into the integral, ( )( ) ( ) ( )( ) ( )b g b a g a f g x g x dx f u du′ =∫ ∫ . Integration by Parts The standard formulas for integration by parts are, b bb aa a udv uv vdu udv uv vdu=− =−∫ ∫ ∫ ∫ Choose u and dv and then compute du by differentiating u and compute v by using the fact that v dv= ∫ .
Common Derivatives and
Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Trig Substitutions If the integral contains the following root use the given substitution and formula. 2 2 2 2 2 sin and cos 1 sin a a b x x b θ θ θ− ⇒ = =− 2 2 2 2 2 sec and tan sec 1 a b x a x b θ θ θ− ⇒ = = − 2 2 2 2 2 tan and sec 1 tan a a b x x b θ θ θ+ ⇒ = =+ Partial Fractions If integrating ( ) ( ) P x dx Q x ⌠ ⌡ where the degree (largest exponent) of ( )P x is smaller than the degree of ( )Q x then factor the denominator as completely as possible and find the partial fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get term(s) in the decomposition according to the following table. Factor in ( )Q x Term in P.F.D Factor in ( )Q x Term in P.F.D ax b+ A ax b+ ( ) k ax b+ ( ) ( ) 1 2 2 k k AA A ax b ax b ax b + + + + + + 2 ax bx c+ + 2 Ax B ax bx c + + + ( )2 k ax bx c+ + ( ) 1 1 2 2 k k k A x BA x B ax bx c ax bx c ++ + + + + + + Products and (some) Quotients of Trig Functions sin cosn m x x dx∫ 1. If n is odd. Strip one sine out and convert the remaining sines to cosines using 2 2 sin 1 cosx x= − , then use the substitution cosu x= 2. If m is odd. Strip one cosine out and convert the remaining cosines to sines using 2 2 cos 1 sinx x= − , then use the substitution sinu x= 3. If n and m are both odd. Use either 1. or 2. 4. If n and m are both even. Use double angle formula for sine and/or half angle formulas to reduce the integral into a form that can be integrated. tan secn m x x dx∫ 1. If n is odd. Strip one tangent and one secant out and convert the remaining tangents to secants using 2 2 tan sec 1x x= − , then use the substitution secu x= 2. If m is even. Strip two secants out and convert the remaining secants to tangents using 2 2 sec 1 tanx x= + , then use the substitution tanu x= 3. If n is odd and m is even. Use either 1. or 2. 4. If n is even and m is odd. Each integral will be dealt with differently. Convert Example : ( ) ( ) 3 36 2 2 cos cos 1 sinx x x= = −

You are watching: Common derivatives integrals. Info created by Bút Chì Xanh selection and synthesis along with other related topics.