how to remember trig derivatives (\u0026 inverse trig derivatives)
how to remember trig derivatives (\u0026 inverse trig derivatives)

Início
Conheça mais
Enviar pesquisa
Carregar
Entrar
Cadastre-se
Common derivatives integrals
Denunciar
olziich
Seguir
26 de Apr de 2015

0 gostou

22,433 visualizações
Check these out next
Integral Calculus
itutor
Lesson 13: Exponential and Logarithmic Functions (slides)
Matthew Leingang
3.1 derivative of a function
btmathematics
Capitulo 4 Soluciones Purcell 9na Edicion
FranciscoAlfonso TorresVeliz
Lesson 9: The Product and Quotient Rules (slides)
Matthew Leingang
4.1 the chain rule
Aron Dotson
Rational Root Theorem
cmorgancavo
1531 fourier series- integrals and trans
Dr Fereidoun Dejahang
Próximos SlideShares
Common derivatives integrals
Carregando em … 3
1
de
4
Top clipped slide
Common derivatives integrals
26 de Apr de 2015

0 gostou

22,433 visualizações
Baixar agora
Baixar para ler offline
Denunciar
Educação
math
olziich
Seguir
Recomendados
Common derivatives integrals
Kavin Ruk
524 visualizações

4 slides
Reduction forumla
Dr. Nirav Vyas
1.5K visualizações

237 slides
functions limits and continuity
Pume Ananda
1.1K visualizações

42 slides
Integration techniques
Krishna Gali
2.5K visualizações

18 slides
Lesson 9: Basic Differentiation Rules
Matthew Leingang
4.6K visualizações

75 slides
Integral table
Antonio Alanya
4K visualizações

14 slides
Mais conteúdo relacionado
Destaque
(20)
Integral Calculus
itutor

15.5K visualizações
Lesson 13: Exponential and Logarithmic Functions (slides)
Matthew Leingang

3.5K visualizações
3.1 derivative of a function
btmathematics

10.7K visualizações
Capitulo 4 Soluciones Purcell 9na Edicion
FranciscoAlfonso TorresVeliz

11.1K visualizações
Lesson 9: The Product and Quotient Rules (slides)
Matthew Leingang

3.7K visualizações
4.1 the chain rule
Aron Dotson

4.3K visualizações
Rational Root Theorem
cmorgancavo

7.9K visualizações
1531 fourier series- integrals and trans
Dr Fereidoun Dejahang

815 visualizações
Runge-Kutta methods with examples
Sajjad Hossain

802 visualizações
Generating functions solve recurrence
Hae Morgia

255 visualizações
Common derivatives integrals_reduced
Kyro Fitkry

23K visualizações
The chain rule
J M

4.2K visualizações
Lesson 11: Limits and Continuity
Matthew Leingang

9.7K visualizações
【材料力学】モールの応力円 (II-12 2018)
Kazuhiro Suga

4K visualizações
Indefinite Integral
JelaiAujero

14.1K visualizações
Lecture 8 derivative rules
njit-ronbrown

7.8K visualizações
Lesson 9: The Product and Quotient Rule
Matthew Leingang

3.7K visualizações
Integration and its basic rules and function.
Kartikey Rohila

5K visualizações
Circular functions
Jessica Garcia

29.8K visualizações
Rational equations
rallenforsythk12gaus

7.9K visualizações
Similar a Common derivatives integrals
(20)
微積分定理與公式
zoayzoay

1.8K visualizações
Bsc maths derivative_formula
Shani Qasmi

193 visualizações
Cuaderno+de+integrales
joseluisroyo

614 visualizações
Calculo i
salomon benito

457 visualizações
Calculo i
salomon benito

636 visualizações
Capitulo 7 Soluciones Purcell 9na Edicion
FranciscoAlfonso TorresVeliz

15.2K visualizações
51548 0131469657 ism-7
Carlos Fuentes

425 visualizações
51548 0131469657 ism-7
crhisstian

1.5K visualizações
Formulario calculo
Andrea José Fuentes Bisbal

1.9K visualizações
Formulario cálculo
Man50035

179 visualizações
Formulario oficial-calculo
Favian Flores

286 visualizações
Formulario derivadas e integrales
Geovanny Jiménez

14.4K visualizações
Formulario
Genaro Coronel

313 visualizações
Calculo
Ju Lio

335 visualizações
Tablas calculo
Alejandra Fuquene

444 visualizações
Calculo
María Mora

327 visualizações
Formulas de calculo
Jose Alejandro

281 visualizações
Formulario
Jonnathan Cespedes

345 visualizações
Formulario calculo
Javier Culebro Ara

85 visualizações
51556 0131469657 ism-15
Carlos Fuentes

434 visualizações
Último
(20)
Governor Sindh IT course 2nd Entrance Test conducted on 20 july 2023.docx
Darya Khan

40 visualizações
Expert Guidance on Current Standards and New Directions in Newly Diagnosed Mu…
i3 Health

42 visualizações
Innovate to Impact_Gerda Noormägi.pdf
European Innovation Academy

102 visualizações
Renal failure.pptx
RavishankarAhirwar1

234 visualizações
Behaviorist Theory by Pavlov and Skinner.pptx
Samruddhi Chepe

55 visualizações
Startup & New Venture Management_Unit 3 Financial Road-map.pdf
Sandeep D Chaudhary

42 visualizações
Familiarization with UiPath Studio.pptx
ApurbaSamanta9

45 visualizações
BÀI TẬP BỔ TRỢ TIẾNG ANH I-LEARN SMART WORLD 8 CẢ NĂM CÓ FILE NGHE NĂM HỌC 20…
Nguyen Thanh Tu Collection

56 visualizações
Unit I. Introduction to Nursing Research.pptx
shakirRahman10

88 visualizações
The Psychology of money .pptx
JayPatel444955

44 visualizações
NLP – updated (Natural Language Processing))
Jitendra Kumar Yadav

49 visualizações
Discover the Best TechSoup Training Resources for Libraries- July 18, 2023.pdf
TechSoup

281 visualizações
AJM FINALS 2023.pptx
Arul Mani

452 visualizações
chapter one introduction of pharmacognosy.pptx
daakirmaxamed

107 visualizações
What is Management: Defining the Essence of Effective Leadership.pptx
kuldeepBirwal1

425 visualizações
IIFD – Indian Institute of Fashion & Design.pdf
IIFD – Indian institute Fashion design

106 visualizações
Enabling Neurodivergent Students to Thrive
Pooky Knightsmith

1.3K visualizações
Adams_Climate Change and Business Opportunities.pptx
European Innovation Academy

86 visualizações
An Implementation of Preregistration
mboehme

144 visualizações
I Fought the Law – Abney Park Cemetery’s Residents Behind Bars by Sam Perrin
History of Stoke Newington

76 visualizações
Common derivatives integrals
Common Derivatives and
Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Derivatives Basic Properties/Formulas/Rules ( )( ) ( ) d cf x cf x dx ¢= , c is any constant. ( ) ( )( ) ( ) ( )f x g x f x g x¢ ¢ ¢± = ± ( ) 1n nd x nx dx – = , n is any number. ( ) 0 d c dx = , c is any constant. ( )f g f g f g¢ ¢ ¢= + – (Product Rule) 2 f f g f g g g ¢ ¢ ¢æ ö – =ç ÷ è ø – (Quotient Rule) ( )( )( ) ( )( ) ( ) d f g x f g x g x dx ¢ ¢= (Chain Rule) ( ) ( ) ( ) ( )g x g xd g x dx ¢=e e ( )( ) ( ) ( ) ln g xd g x dx g x ¢ = Common Derivatives Polynomials ( ) 0 d c dx = ( ) 1 d x dx = ( ) d cx c dx = ( ) 1n nd x nx dx – = ( ) 1n nd cx ncx dx – = Trig Functions ( )sin cos d x x dx = ( )cos sin d x x dx = – ( ) 2 tan sec d x x dx = ( )sec sec tan d x x x dx = ( )csc csc cot d x x x dx = – ( ) 2 cot csc d x x dx = – Inverse Trig Functions ( )1 2 1 sin 1 d x dx x – = – ( )1 2 1 cos 1 d x dx x – = – – ( )1 2 1 tan 1 d x dx x – = + ( )1 2 1 sec 1 d x dx x x – = – ( )1 2 1 csc 1 d x dx x x – = – – ( )1 2 1 cot 1 d x dx x – = – + Exponential/Logarithm Functions ( ) ( )lnx xd a a a dx = ( )x xd dx =e e ( )( ) 1 ln , 0 d x x dx x = > ( ) 1 ln , 0 d x x dx x = ¹ ( )( ) 1 log , 0 ln a d x x dx x a = > Hyperbolic Trig Functions ( )sinh cosh d x x dx = ( )cosh sinh d x x dx = ( ) 2 tanh sech d x x dx = ( )sech sech tanh d x x x dx = – ( )csch csch coth d x x x dx = – ( ) 2 coth csch d x x dx = –
Common Derivatives and
Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Integrals Basic Properties/Formulas/Rules ( ) ( )cf x dx c f x dx=ò ò , c is a constant. ( ) ( ) ( ) ( )f x g x dx f x dx g x dx± = ±ò ò ò ( ) ( ) ( ) ( ) b b aa f x dx F x F b F a= = -ò where ( ) ( )F x f x dx= ò ( ) ( ) b b a a cf x dx c f x dx=ò ò , c is a constant. ( ) ( ) ( ) ( ) b b b a a a f x g x dx f x dx g x dx± = ±ò ò ò ( ) 0 a a f x dx =ò ( ) ( ) b a a b f x dx f x dx= -ò ò ( ) ( ) ( ) b c b a a c f x dx f x dx f x dx= +ò ò ò ( ) b a cdx c b a= -ò If ( ) 0f x ³ on a x b£ £ then ( ) 0 b a f x dx ³ò If ( ) ( )f x g x³ on a x b£ £ then ( ) ( ) b b a a f x dx g x dx³ò ò Common Integrals Polynomials dx x c= +ò k dx k x c= +ò 11 , 1 1 n n x dx x c n n + = + ¹ – +ò 1 lndx x c x = +ó ô õ 1 lnx dx x c- = +ò 11 , 1 1 n n x dx x c n n – – + = + ¹ – +ò 1 1 lndx ax b c ax b a = + + + ó ô õ 11 1 p p p q q q q p q q x dx x c x c p q + + = + = + + +ò Trig Functions cos sinu du u c= +ò sin cosu du u c= – +ò 2 sec tanu du u c= +ò sec tan secu u du u c= +ò csc cot cscu udu u c= – +ò 2 csc cotu du u c= – +ò tan ln secu du u c= +ò cot ln sinu du u c= +ò sec ln sec tanu du u u c= + +ò ( )3 1 sec sec tan ln sec tan 2 u du u u u u c= + + +ò csc ln csc cotu du u u c= – +ò ( )3 1 csc csc cot ln csc cot 2 u du u u u u c= – + – +ò Exponential/Logarithm Functions u u du c= +òe e ln u u a a du c a = +ò ( )ln lnu du u u u c= – +ò ( ) ( ) ( )( )2 2 sin sin cos au au bu du a bu b bu c a b = – + +ò e e ( )1u u u du u c= – +ò e e ( ) ( ) ( )( )2 2 cos cos sin au au bu du a bu b bu c a b = + + +ò e e 1 ln ln ln du u c u u = +ó ô õ
Common Derivatives and
Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Inverse Trig Functions 1 2 2 1 sin u du c aa u – æ ö = +ç ÷ è ø- ó ô õ 1 1 2 sin sin 1u du u u u c- – = + – +ò 1 2 2 1 1 tan u du c a u a a – æ ö = +ç ÷ + è ø ó ô õ ( )1 1 21 tan tan ln 1 2 u du u u u c- – = – + +ò 1 2 2 1 1 sec u du c a au u a – æ ö = +ç ÷ è ø- ó ô õ 1 1 2 cos cos 1u du u u u c- – = – – +ò Hyperbolic Trig Functions sinh coshu du u c= +ò cosh sinhu du u c= +ò 2 sech tanhu du u c= +ò sech tanh sechu du u c= – +ò cschcoth cschu du u c= – +ò 2 csch cothu du u c= – +ò ( )tanh ln coshu du u c= +ò 1 sech tan sinhu du u c- = +ò Miscellaneous 2 2 1 1 ln 2 u a du c a u a u a + = + – – ó ô õ 2 2 1 1 ln 2 u a du c u a a u a – = + – + ó ô õ 2 2 2 2 2 2 2 ln 2 2 u a a u du a u u a u c+ = + + + + +ò 2 2 2 2 2 2 2 ln 2 2 u a u a du u a u u a c- = – – + – +ò 2 2 2 2 2 1 sin 2 2 u a u a u du a u c a – æ ö – = – + +ç ÷ è ø ò 2 2 2 1 2 2 cos 2 2 u a a a u au u du au u c a — -æ ö – = – + +ç ÷ è ø ò Standard Integration Techniques Note that all but the first one of these tend to be taught in a Calculus II class. u Substitution Given ( )( ) ( ) b a f g x g x dx¢ò then the substitution ( )u g x= will convert this into the integral, ( )( ) ( ) ( )( ) ( )b g b a g a f g x g x dx f u du¢ =ò ò . Integration by Parts The standard formulas for integration by parts are, b bb aa a udv uv vdu udv uv vdu= – = -ò ò ò ò Choose u and dv and then compute du by differentiating u and compute v by using the fact that v dv= ò .
Common Derivatives and
Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Trig Substitutions If the integral contains the following root use the given substitution and formula. 2 2 2 2 2 sin and cos 1 sin a a b x x b q q q- Þ = = – 2 2 2 2 2 sec and tan sec 1 a b x a x b q q q- Þ = = – 2 2 2 2 2 tan and sec 1 tan a a b x x b q q q+ Þ = = + Partial Fractions If integrating ( ) ( ) P x dx Q x ó ô õ where the degree (largest exponent) of ( )P x is smaller than the degree of ( )Q x then factor the denominator as completely as possible and find the partial fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get term(s) in the decomposition according to the following table. Factor in ( )Q x Term in P.F.D Factor in ( )Q x Term in P.F.D ax b+ A ax b+ ( ) k ax b+ ( ) ( ) 1 2 2 k k AA A ax b ax b ax b + + + + + + L 2 ax bx c+ + 2 Ax B ax bx c + + + ( )2 k ax bx c+ + ( ) 1 1 2 2 k k k A x BA x B ax bx c ax bx c ++ + + + + + + L Products and (some) Quotients of Trig Functions sin cosn m x xdxò 1. If n is odd. Strip one sine out and convert the remaining sines to cosines using 2 2 sin 1 cosx x= – , then use the substitution cosu x= 2. If m is odd. Strip one cosine out and convert the remaining cosines to sines using 2 2 cos 1 sinx x= – , then use the substitution sinu x= 3. If n and m are both odd. Use either 1. or 2. 4. If n and m are both even. Use double angle formula for sine and/or half angle formulas to reduce the integral into a form that can be integrated. tan secn m x x dxò 1. If n is odd. Strip one tangent and one secant out and convert the remaining tangents to secants using 2 2 tan sec 1x x= – , then use the substitution secu x= 2. If m is even. Strip two secants out and convert the remaining secants to tangents using 2 2 sec 1 tanx x= + , then use the substitution tanu x= 3. If n is odd and m is even. Use either 1. or 2. 4. If n is even and m is odd. Each integral will be dealt with differently. Convert Example : ( ) ( ) 3 36 2 2 cos cos 1 sinx x x= = –

You are watching: Common derivatives integrals. Info created by Bút Chì Xanh selection and synthesis along with other related topics.