Miscellaneous

Misc 2

Misc 3

Misc 4

Misc 5 Important You are here

Misc 6 Important

Misc 7 Important

Misc 8

Misc 9 Important

Misc 10

Misc 11 Important

Misc 12

Misc 13 Important

Misc 14 Important

Misc 15 Important

Misc 16 Important

Misc 17 Important

Misc 18

Misc 19

Misc 20

Misc 21

Misc 22 Important

Question 1 Important Deleted for CBSE Board 2024 Exams

Last updated at June 5, 2023 by Teachoo

Misc 5 Differentiate 𝑤.𝑟.𝑡. 𝑥 the function, (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/√(2𝑥+7 ) , – 2 < 𝑥 < 2 Let 𝑦= (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/√(2𝑥+7 ) Differentiating both sides 𝑤.𝑟.𝑡. 𝑥 𝑑𝑦/𝑑𝑥 = 𝑑/𝑑𝑥 ((〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/√(2𝑥+7 )) Using Quotient rule As (𝑢/𝑣)^′ = (𝑢^′ 𝑣 − 𝑣^′ 𝑢)/𝑣^2 where u = cos−1 𝑥/2 & v = √(2𝑥+7) 𝑑𝑦/𝑑𝑥 = (𝑑(〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/𝑑𝑥 . √(2𝑥 + 7 ) − 𝑑(√(2𝑥 + 7 ))/𝑑𝑥 . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/(√(2𝑥 + 7 ))^2 𝑑𝑦/𝑑𝑥 = ((−1)/√(1 −(𝑥/2)^2 ) . 𝑑(𝑥/2)/𝑑𝑥 √(2𝑥 + 7 ) − 1/(2√(2𝑥 + 7)) . 𝑑(2𝑥 + 7)/𝑑𝑥 . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/(√(2𝑥 + 7 ))^2 𝑑𝑦/𝑑𝑥 = ((−1)/√(〖(4 − 𝑥)/4〗^2 ) . 1/2 √(2𝑥 + 7 ) − 1/(2√(2𝑥 + 7)) . (2 + 0) . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) ) 𝑑𝑦/𝑑𝑥 = ((−2)/√(〖4 − 𝑥〗^2 ) . 1/2 √(2𝑥 + 7 ) − 1/(2√(2𝑥 + 7)) . 2 . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) ) 𝑑𝑦/𝑑𝑥 = ((− √(𝟐𝒙 + 𝟕 ))/( √(〖𝟒 − 𝒙〗^𝟐 )) − (. 〖𝒄𝒐𝒔〗^(−𝟏 ) 𝒙/𝟐)/√(𝟐𝒙 + 𝟕) )/((2𝑥 + 7) ) 𝑑𝑦/𝑑𝑥 = (− √(2𝑥 + 7 ) ( √(2𝑥 + 7 )) − 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 √(〖4 − 𝑥〗^2 ))/((2𝑥 + 7) (√(2𝑥 + 7 )) (√(〖4 − 𝑥〗^2 )) ) 𝑑𝑦/𝑑𝑥 = 〖−(√(2𝑥 + 7 ))〗^2/((2𝑥 + 7) ( √(2𝑥 + 7 )) (√(〖4 − 𝑥〗^2 )) ) “+ ” (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 √(〖4 − 𝑥〗^2 ))/((2𝑥 + 7) ( √(2𝑥 + 7 )) (√(〖4 − 𝑥〗^2 )) ) 𝑑𝑦/𝑑𝑥 = (−(2𝑥 + 7))/((2𝑥 + 7) √(2𝑥 + 7 ) √(〖4 − 𝑥〗^2 )) “+ ” (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) √(2𝑥 + 7 ) ) 𝑑𝑦/𝑑𝑥 = (−1)/(√(2𝑥 + 7 ) √(〖4 − 𝑥〗^2 )) “+ ” (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) (2𝑥 + 7)^(1/2) ) 𝒅𝒚/𝒅𝒙 = (−𝟏)/(√(𝟐𝒙 + 𝟕) √(〖𝟒 − 𝒙〗^𝟐 ))−(〖𝒄𝒐𝒔〗^(−𝟏 ) 𝒙/𝟐 )/((𝟐𝒙 + 𝟕)^(𝟑/𝟐) )