Ex 12.2

Ex 12.2, 2

Ex 12.2, 3

Ex 12.2, 4 (i) Important

Ex 12.2, 4 (ii)

Ex 12.2, 4 (iii) Important

Ex 12.2, 4 (iv)

Ex 12.2, 5

Ex 12.2, 6

Ex 12.2, 7 (i) Important

Ex 12.2, 7 (ii)

Ex 12.2, 7 (iii) Important

Ex 12.2, 8

Ex 12.2, 9 (i)

Ex 12.2, 9 (ii) Important

Ex 12.2, 9 (iii)

Ex 12.2, 9 (iv) Important

Ex 12.2, 9 (v)

Ex 12.2, 9 (vi)

Ex 12.2, 10 Important You are here

Ex 12.2, 11 (i)

Ex 12.2, 11 (ii) Important

Ex 12.2, 11 (iii) Important

Ex 12.2, 11 (iv)

Ex 12.2, 11 (v) Important

Ex 12.2, 11 (vi)

Ex 12.2, 11 (vii) Important

Ex 12.2

Last updated at May 29, 2023 by Teachoo

Ex 12.2, 10 Find the derivative of cos x from first principle. Let f (x) = cos x We need to find f’(x) We know that f’(x) = (𝑙𝑖𝑚)┬(ℎ→0) 𝑓〖(𝑥 + ℎ) − 𝑓(𝑥)〗/ℎ Here, f (x) = cos x So, f (x + h) = cos (x + h) Putting values, f’ (x) = lim┬(h→0)〖(𝒄𝒐𝒔 (𝒙 + 𝒉) −〖 𝒄𝒐𝒔〗𝒙)/h〗 Using cos A – cos B = – 2 sin ((𝐴 + 𝐵)/2) sin ((𝐴 − 𝐵)/2) = lim┬(h→0)〖(−𝟐 𝒔𝒊𝒏((𝒙 + (𝒙 + 𝒉))/𝟐) . 𝒔𝒊𝒏(((𝒙 + 𝒉) − 𝒙)/𝟐))/h〗 = lim┬(h→0)〖(−2 𝑠𝑖𝑛((2𝑥 + ℎ)/2) . 𝑠𝑖𝑛(ℎ/2))/h〗 = lim┬(h→0)〖−2 sin((2𝑥 + ℎ)/2).〖sin 〗〖ℎ/2〗/ℎ〗 = lim┬(h→0)〖−sin((2𝑥 + ℎ)/2).〖sin 〗〖ℎ/2〗/(ℎ/2)〗 Using (𝑙𝑖𝑚)┬(𝑥→0)〖 𝑠𝑖𝑛𝑥/𝑥〗=1 Replacing x by ℎ/2 ⇒ (𝑙𝑖𝑚)┬(ℎ→0) 𝑠𝑖𝑛〖 ℎ/2〗/(( ℎ)/2) = 1 = lim┬(h→0)〖−sin((2𝑥 + ℎ)/2).(𝐥𝐢𝐦)┬(𝐡→𝟎) 〖𝐬𝐢𝐧 〗〖𝒉/𝟐〗/(𝒉/𝟐)〗 = lim┬(h→0)〖−sin((2𝑥 + ℎ)/2).𝟏〗 = lim┬(h→0)〖−sin((2𝑥 + ℎ)/2) 〗 Putting h = 0 = −sin((2𝑥 +0)/2) = −sin(2𝑥/2) = – sin x ∴ f’(x) = –sin x