DIFFERENTIAL EQUATIONS – Equilibria and the Phase Line Practice #1
DIFFERENTIAL EQUATIONS – Equilibria and the Phase Line Practice #1

Phase portraits of differential equations help visualize the response of a system to initial conditions and when represented in state-space form, how do the system space vector gets effected for zero input response as function of time.

% Matlab Code for Phase Portraits % Author: Abu Bakar Siddique % Dated: 25-Mar-2016 clear all; close all; clc [x1,x2] = meshgrid(-4:.5:4,-4:.5:4); x1 = x1(:)’; x2 = x2(:)’; A1 = [-1 0; 0 -4]; A2 = [-2 -1; -2 -3]; A3 = [-2 0; 0 1]; A4 = [-3 -2; 2 2]; A5 = [-1 1; -1 -3]; A6 = [-2 1; 0 -2]; A7 = [2 -3; 6 -4]; A8 = [-1 2; -5 1]; A9 = [-3 1; 0 -2]; lineWidth = 3; subplot (241); xdot = A1*[x1; x2];x1d = xdot(1,:); x2d = xdot(2,:);mag = sqrt(x1d.^2 + x2d.^2);quiver(x1,x2,x1d./mag, x2d./mag,’b’); hold on; quiver([0 0],[0 0],[1 0], [0 1],’r’,’linewidth’,lineWidth); hold off axis tight equal; title(‘A_1′) subplot (242) xdot = A2*[x1; x2];x1d = xdot(1,:); x2d = xdot(2,:);mag = sqrt(x1d.^2 + x2d.^2);quiver(x1,x2,x1d./mag, x2d./mag,’b’); hold on; quiver([0 0],[0 0],[1 1], [-1 2],’r’,’linewidth’,lineWidth); hold off axis tight equal; title(‘A_2′) subplot (243) xdot = A3*[x1; x2];x1d = xdot(1,:); x2d = xdot(2,:);mag = sqrt(x1d.^2 + x2d.^2);quiver(x1,x2,x1d./mag, x2d./mag,’b’); hold on; quiver([0 0],[0 0],[1 0], [0 1],’r’,’linewidth’,lineWidth); hold off axis tight equal; title(‘A_3′) subplot (244) xdot = A4*[x1; x2];x1d = xdot(1,:); x2d = xdot(2,:);mag = sqrt(x1d.^2 + x2d.^2);quiver(x1,x2,x1d./mag, x2d./mag,’b’); hold on; quiver([0 0],[0 0],[-2 1], [1 -2],’r’,’linewidth’,lineWidth); hold off axis tight equal; title(‘A_4′) subplot (245) xdot = A5*[x1; x2];x1d = xdot(1,:); x2d = xdot(2,:);mag = sqrt(x1d.^2 + x2d.^2);quiver(x1,x2,x1d./mag, x2d./mag,’b’); hold on; quiver([0 0],[0 0],[-1 -1], [1 1],’r’,’linewidth’,lineWidth); hold off axis tight equal; title(‘A_5′) subplot (246) xdot = A6*[x1; x2];x1d = xdot(1,:); x2d = xdot(2,:);mag = sqrt(x1d.^2 + x2d.^2);quiver(x1,x2,x1d./mag, x2d./mag,’b’); hold on; quiver([0 0],[0 0],[1 1], [0 0],’r’,’linewidth’,lineWidth); hold off axis tight equal; title(‘A_6′) subplot (247) xdot = A7*[x1; x2];x1d = xdot(1,:); x2d = xdot(2,:);mag = sqrt(x1d.^2 + x2d.^2);quiver(x1,x2,x1d./mag, x2d./mag,’b’); % hold on; quiver([0 0],[0 0],[1 1], [-1 1],’r’); hold off axis tight equal; title(‘A_7′) subplot (248) xdot = A8*[x1; x2];x1d = xdot(1,:); x2d = xdot(2,:);mag = sqrt(x1d.^2 + x2d.^2);quiver(x1,x2,x1d./mag, x2d./mag,’b’); % hold on; quiver([0 0],[0 0],[1 1], [-1 1],’r’); hold off axis tight equal; title(‘A_8’) ha = axes(‘Position’,[0 0 1 1],’Xlim’,[0 1],’Ylim’,[0 1],’Box’,’off’,’Visible’,’off’,’Units’,’normalized’, ‘clipping’ , ‘off’); text(0.5, 1,’\bf Phase Portrait Plots submitted by Abu Bakar Siddique: 2013-Phd-Elect-008)’,’HorizontalAlignment’ ,’center’,’VerticalAlignment’, ‘top’)

quiver(X,Y,U,V) plots velocity vectors as arrows with components (u,v)
at the points (x,y). The matrices X,Y,U,V must all be the same size
and contain corresponding position and velocity components (X and Y
can also be vectors to specify a uniform grid). quiver automatically
scales the arrows to fit within the grid.

You are watching: Phase Portraits of Differential Equations. Info created by Bút Chì Xanh selection and synthesis along with other related topics.